
G oogle Summer of Code (GSoC)
is one of Google's important
programmes that encourages
open source development and

contribution. This event, first held from May
to August 2005, is an annual programme.
Through these few months every year, Google
awards stipends to hundreds of students who
successfully complete free and open source
coding projects that have been requested for.
The programme is open to students aged 18
and above.

Although it's dubbed the Summer of
Code, I would say it's more about passion
than code. A piece of code is just a written
expression of the passion, anyway.

Being a student developer, it means a lot

to us when speaking about our Summer of
Code experience. Every year, Google selects
around 1,000 student developers, from around
the world, assigned to different open source
projects. See code.google.com/soc for more.

This was my second GSoC. In 2008, I
participated in a Fedora project. And in 2009,
I worked with the Pardus Linux project.
Pardus is a nicely built and user-friendly
GNU/Linux distro from Turkey, developed
and maintained by TUBITAK (The National
Scientific and Technological Research
Council of Turkey). My project was to create
a Web-based ISO image creation tool for
Pardus and I was mentored by Ekin Meroglu,
core developer and project administrator,
Pardus Linux Project.

Today, almost all of us have tried our hands at building a custom
OpenSuse distribution, using the latest SuseStudio. The

experience of being able to customise a distribution
installer to suit one’s needs is stupendous. However,

have you ever wondered if you could customise
the installers for other distros too? Welcome

to the Pardusman Project!

The
Pardusman

Project
A Google Summer of Code 2009 Entry

Introducing

40  |  NOVEMBER 2009 | LINUX FOR YOU | www.LinuxForU.com

Developers  |  How To __

www.LinuxForU.com | LINUX FOR YOU | NOVEMBER 2009 | 41

___ How To  |  Developers

are classified as different components according to
their group. For example, the GIMP and Inkscape are
other graphic tools included in the package group
'multimedia-graphics'. By using a drop-down tree
element, we access the packages under a package
group and select the check boxes in order to include
them. We can even include all packages in a package
group by checking the group itself. Also, there is a
search option available to look for packages. All the
packages from the selected Pardus repository will be
listed in the packages widget. There is also an option to
calculate size—on clicking the Calculate button, you
can get the total size for the build.

7.	 Wallpaper:	You can either select the default option
from the list of wallpapers, or upload your own.

8.	 Media	Selection:	You can select the required image
output. For example, an ISO image, or virtualisation
images like VMWare, Qemu, Virtualbox, etc.
Once you have completed the wizard, you can submit

A background on Pardus
Pardus, as a GNU/Linux distro, is known to be user-
friendly, sleek, simple and spicy with lots of custom
configuration tools written by the Pardus team. The distro
is not based on any of the traditional base distros like
Debian or Red Hat. It's completely written from scratch.
The package management tool is PISI. The distro makes
use of lzma compression for packages and also supports
xdelta-like techniques to make fetching packages for
installation, faster. Pardus has developed its own core
libraries and APIs to develop different applications on the
Pardus platform.

Personally, I have been fascinated by Pardus for the
last two years. Its boot speed is what I found to be the
most impressive. This had prompted me to dig into the
initrd/init boot scripts. I found it interesting that all system
configs and automation scripts (traditionally written in
Bash) have been replaced by Python. Even before Ubuntu's
fastboot technology Upstart came out, Pardus’ init was
much faster.

What's my project about?
We have numerous variants of GNU/Linux (popularly
known as distributions or distros) for different
purposes. When we go for a distro install, we receive a
base system with a standard set of applications bundled
along with them. To make the OS work to our likes and
specs, we need to install another set of packages that
cater to our working domain or interest. Also, it requires
setting up themes, wallpapers, copying our own files to
the home directory, etc.

My project aimed at bringing out a Web-based
distro ‘cooker’. Users should be able to create their own
custom distro builds by providing numerous custom
options ranging from wallpapers to package selections.
By locating the URL of this distro cooker (let's call it
Pardusman), we could do the following customisation,
using a simple Web interface:
1. Home	Page

Sign up for a user account
Sign in to Pardusman

2.	 Distro	type
Select the distro type: Live CD or Install CD? If it's
Live, specify the user name, password, and host
name
Provide a build project name

3.	 Repository:	Select the package repository from the
Pardus servers, to be used for the build.

4.	 Languages: Select language support to be included,
besides setting the default language.

5.	 Upload
Upload a RELEASE file (i.e., a text file that appears
in the root of the CD-ROM that contains some
notes on the build).
Upload the contents of the home directory.

6.	 Packages: A package tree widget will appear. Packages

•
•

•

•

•

•

Figure 1: Sign-in

Figure 2: Distro type

40  |  NOVEMBER 2009 | LINUX FOR YOU | www.LinuxForU.com

Developers  |  How To __

www.LinuxForU.com | LINUX FOR YOU | NOVEMBER 2009 | 41

___ How To  |  Developers

circumstances, the manual way of backing up the code
makes everything complex and difficult. Sometimes this
even leads to loss of data/code. So, it is always advisable
to use some kind of version control system (VCS) to
keep track of code.

Git is one of the best version control systems available.
I decided to go with Git, synced with github.com, where
several FOSS projects are housed. You can pull the latest
copy of Pardusman, using:

$ git clone git://github.com/t3rm1n4l/pardusman.git

Coming back to the UI elements, my next job was
to create the set of Web pages using HTML and CSS. I
scripted each page to complete the Web wizard described
earlier. My template was now ready.

However, since the wizard, whose purpose is to collect
data from a user, consists of several pages, it required
transition from page to page. Page-to-page transitions were
in traditional styles and not of Web 2.0 standards. So, I
decided to use div containers, which can dynamically load
HTML content using AJAX. This made the requirement
for refreshing and loading new pages through URLs,
redundant.

JQuery is a rich open source JavaScript library that
helps to implement AJAX methods and calls using its
rich in-built functionalities. I could easily implement the
dynamic loading of pages and simple animation effects,
using JQuery.

Once the templates and basic AJAX loading were
completed, I started off with Django, Python's own
Web framework. Django is a rapid Web application
development platform. It makes it easier to develop
complex Web applications in a short span of time. The
coding with Pardusman progressed very fast.

The database storage in Django is handled using its
own data model object-oriented structures. Initially, I
wrote the pages for the user account sign up and sign in.
Django was pretty easy to follow and code.

I got stuck with coding while creating a complex
package selection widget. A package selection widget
consists of a drop-down of packages with components in
the top level and check boxes attached to it. It was solved
with JQuery hacks. Thanks to the #jquery IRC channel of
irc.freenode.net for helping me out.

There will be more than one package repository, like
pardus-2008 and pardus-2009. By selecting any one of
them, we can build either a Pardus 2009 or a Pardus
2008 distribution. Dynamically producing the package
information and bringing it to the packages widget
causes overheads and puts a heavy load on the CPU.
There might be thousands of packages in the repo and
hundreds of users simultaneously accessing Pardusman,
which would surely bring the server down. So I decided
to build a static repo package information creator that
would be scheduled to update the packages information

the configuration for distro building. It will be processed by
the buildfarm queue underlying in the Pardus server. You
can check back after a few hours and look into the 'user
log' page to get the status of the build you have requested,
the link for download, the link to the project file and the
Pardusman log file. Also, a history of all builds you have
ever made.

Getting started
I started my work with UI (user interface) design. I worked
out the basic pages and their structure. Then I designed
these using Inkscape and published them on my blog for
feedback. As it happens with FOSS projects in general, I
too got a lot of feedback. In fact, one of my good friends
(Hiran) helped me give the finishing touches to the final
set of images I required for the front-end UI.

Typically, a project has several development
versions of the same app while coding. Under the

Figure 3: Repository selection

Figure 4: Package selection widget

42  |  NOVEMBER 2009 | LINUX FOR YOU | www.LinuxForU.com

Developers  |  How To ___

www.LinuxForU.com | LINUX FOR YOU | NOVEMBER 2009 | 43

___ How To  |  Developers

and only a thumbnail is to be returned and shown in the
list of wallpapers. For resizing the uploaded image to a
thumbnail, I have used imagemagick in the backend.

The wizard involves seven basic steps. At each
step, when the next button is clicked, it sends out the
data collected from the current page to the server.
This data is added to the browser session using the
request.session dict object available in Django. Once
all the wizard steps are completed, it has to generate
a configuration file for the custom distro build making
use of all the data provided by the user.

XML is used to represent the project configurations.
The commonly used XML parser library in Python is
ElementTree. But ElementTree is very slow to meet the
requirements of this project. Hence, the Pardus team
has ported piksemel, a XML parser used by the Jabber
protocol, to the Pardus platform. It is a very fast XML
parser. The project_config file is generated with the
following tree structure.

<PardusmanProject type="install" media="iso">

<Title>Test-Project</Title>

<ReleaseFiles>RELEASE.txt</ReleaseFiles>

<Wallpaper>user_wallpapers/wallpaper_R6wL4i.jpg</Wallpaper>

<UserContents>user_contents.tar.gz</UserContents>

<PackageSelection repo="Pardus-2009">

<SelectedComponent>x11-server</SelectedComponent>

<SelectedComponent>desktop-kde-base</SelectedComponent>

<SelectedComponent>x11-util</SelectedComponent>

<SelectedPackage>glitz</SelectedPackage>

<SelectedPackage>libdmx</SelectedPackage>

<SelectedPackage>kdeedu-marble</SelectedPackage>

<Package>less</Package>

<Package>libX11</Package>

<Package>jpeg</Package>

<Package>sysvinit</Package>

<Package>piksemel</Package>

every day. The Web application makes use of that static
page to display package information.

The next difficult task with implementing the UI
was regarding the option of size calculation around the
package widget. Once users select the required packages
through check boxes, they can calculate the total size for
the custom build. The size must be calculated live.

I used the memcached server, which can cache data
and program objects. But the size of the object to be
cached is restricted to 1 MB. I maintained objects of all
repositories with package lists and corresponding package
sizes in the memcached as cache objects.

Once the user clicks the Calculate button, it sends
the list of selected packages to a Django function in the
backend, which accepts the post requests. From the
received list of packages, it analyses the package names
one by one, and its size is grabbed from the repository
memcached object.

The backend handles a lot of complex tasks like
dependency resolving, which is very interesting. The user
selects a set of packages that are required. But they are not
the only packages to be included in the distro build. Each
package is dependent on some other package. This relation
is called dependency.

Each pisi package (e.g., pidgin.pisi) consists of the data
and binary files, along with a meta file that describes all
the details about the package. This is an XML file. We can
find its dependencies by parsing the XML file.

Each package requires some other package to work.
For example, Pidgin requires the following packages to
work, which in turn may require some other package to
work, thus creating a chain of requirements.

Every time a user requests for a size calculation, it
resolves dependencies before calculating the size each
time and returns a set of information. Here's an extract
from the Pidgin package metafile:

<Name>pidgin</Name>

<RuntimeDependencies>

<Dependency>audiofile</Dependency>

<Dependency>gtk2</Dependency>

<Dependency>gnutls</Dependency>

<Dependency>gstreamer</Dependency>

<Dependency>startup-notification</Dependency>

<Dependency>cyrus-sasl</Dependency>

<Dependency>gtkspell</Dependency>

<Dependency>avahi-glib</Dependency>

<RuntimeDependencies>

The method of solving this complex loop and
calculating the list of net packages that should go with
the distro build is known as dependency resolving. It is
performed in the Pardusman backend. Take a look at the
Pardusman code, which you will find interesting.

The wallpaper selection page relies on JQuery. When
a user uploads a picture, it is to be stored in the server,

Figure 5: The 'user log' page lets you download the custom distro you created

42  |  NOVEMBER 2009 | LINUX FOR YOU | www.LinuxForU.com

Developers  |  How To ___

www.LinuxForU.com | LINUX FOR YOU | NOVEMBER 2009 | 43

___ How To  |  Developers

There are lots of complex things underlying
the Buildfarm component. Explaining those
implementation details is not within the scope of this
article. Still, I would like to share some of the best
features that come with the pisi package management
tool, which helped me automate the build of the
filesystem base easily.

For example, if you want to build a filesystem base in
the current directory 'pardus-root', perform the following:

pisi --yes-all -D"./pardus-root" ar pardus-install http://paketler.pardus.org.

tr/pardus-2009/pisi-index.xml.bz2

It initiates the directory 'pardus-root' as the root
filesystem attached with a repository.

Now we can install packages to this filesystem as:
pisi --yes-all --ignore-comar -D"./pardus-root" it -c system.base

pisi --yes-all --ignore-comar -D"./pardus-root" it <package_name>

Did you find any package management tool that is
capable of this? Apt, Yum, Emerge…? There are more.
Suppose I have a bunch of .pisi package files in a directory,
I can make that directory a pisi repository. What do you
think?

Change the current directory to the above mentioned
directory and execute the following:

pisi ix

It will create the index file pisi-index.xml and pisi-
index.xml.bz2

Now you can add the directory as the repository, using:

#pisi ar 'repo-name' ar <directory_path/pisi-index.xml.bz2>

That is all about the essentials of Pardusman. We are
setting up Pardusman on the official Pardus server for all
of you to master your own custom Pardus builds. Keep
yourself updated with http://pardusman.pardus.org.tr.

I have already set up the Pardusman wizard right
there. The Buildfarm component is not yet initiated as the
daemon. The Pardus team will run the Buildfarm soon.
Hence you can have your own distro versions of a custom-
built Pardus, with your own wallpaper, packages, home
folder contents and a lot more.

Grab the code at http://google-summer-of-code-2009-
pardus.googlecode.com/files/Sarath_Lakshman.tar.gz

Enjoy Pardusman. Get, set and burn!
Happy hacking!

</PackageSelection>

<LanguageSelection default_language="en_US">

<Language>en_US</Language>

</LanguageSelection>

</PardusmanProject>

At the end of the wizard, the config file is generated.
The project_file is designed as a tarball (.tar.gz) with the
following structure:

Project_file.tar.gz
---+ user_contents.tar.gz (user home contents)
--- user_presentation.odp
---- RELEASE.txt
---- project.xml
---+ user_wallpapers (wallpaper)
--- wallpaper1.png

On generating the project file, it is sent to the
Buildfarm Process Queue. Buildfarm is a component of
Pardusman that performs the distro builds from the given
project configuration file. Buildfarm is run as a daemon
that is run all the time. Process Queue maintains the list
of distro build requests from users along with the link of
the project file generated. There is another queue called
the On_Progress queue, which maintains the list of distro
projects for which the builds are in progress.

Distro building is a CPU-intensive process and
it requires a heavy hardware configuration to build
multiple distros at a time. On my laptop, performing
more than two distro builds raises temperatures to
very high levels and the laptop gets powered off. So
simultaneous multiple distro builds are to be restricted
according to the server capacity. Buildfarm is provided
with a configuration file through which lots of
parameters can be specified. It includes BUILD_LIMIT
= No of builds to be performed at a time.

The Buildfarm_queue is capable of holding any
number of user build requests. The On_Progress queue
is restricted according to BUILD_LIMIT. Once the build
of one project is completed, a project is fetched from
the Buildfarm_queue to the On_Progress queue and the
build will be started.

Users can keep track of the progress of their project
build requests through the Userlog page. In the Userlog
page, once the user requests for a build and the project
is sent to the Buildfarm_Queue, it will be shown as
'scheduled' against the line that corresponds to a project
build. Once the project is in the build state and is inside
the On_Progress queue, it will be shown as 'in progress'.
If the project build is successful, it will be shown as
'Completed' and if it fails, will show up as 'Failed'. Once the
build is completed, a download link to the image will be
provided. It also will list out a Logfile link, which can be
used for debugging if the project build fails and can send a
bug report or dugg with the reasons for it.

By: Sarath Lakshman
The author is a Hacktivist of Free and Open Source
Software from Kerala. He loves working on the GNU/Linux
environment and contributes to the PiTiVi video editor
project. He is also the developer of SLYNUX, a distro for
newbies. He blogs at www.sarathlakshman.info

44  |  NOVEMBER 2009 | LINUX FOR YOU | www.LinuxForU.com

Developers  |  How To ___

