
Git Version Control Explained

Advanced Options
The article
published in the
September issue
of LFY covered
the fundamentals
of Git, including
the basic data
structures and
commands to get
started with a
local repository
and work with a
remote repository.
This article will
focus on the
advanced features
and commands
available, using
an example to
demonstrate how
to collaboratively
integrate with
GitHub for coding.

Let’s take a look at the advanced features and commands
available in Git.

Merging branches
In Git, you create short-lived branches to develop some
feature. Once the feature is complete, you merge the
code to the main branch, and delete the feature branch or
topic-branch. To merge a branch to the current branch, the
command git merge branch_name is used.

Pulling changes from a remote branch
When you want to sync changes from a remote repository,
use the git pull command—git pull branch_name, for
example; though, if you are pulling from the origin repo,
just git pull is enough.

This will fetch changes from the remote repository and
will try to merge them to the current local repository. Thus,

git pull is the same as git fetch or git merge. If multiple people
are committing to a repository, git pull is not recommended—
you should use git fetch + rebase (see the next section).

Rebasing changes
The merge command tries to put the commits from the branch
to be merged on top of the HEAD of the current local branch
checkout. The git rebase branch_name command is a type of
merge; it tries to find out the common ancestor between the
current local branch and the branch you are trying to merge.
It then puts the commits from the branch you are trying to
merge to the current local branch by modifying the order
of commits in the current local branch. For example, if the
current local branch has the commits A-B-C-D, and the merge
branch has the commits A-B-X-Y, then the merge command
will try to turn the local branch into something like A-B-C-
D-X-Y. The rebase command, however, tries to formulate the

52  |  october 2012  |  LINUX For You  |  www.LinuxForU.com

Developers Ins ight

repo as A-B-X-Y-C-D.
When multiple developers work on a single remote

repository, you cannot modify the order of commits in the
remote repository. Hence, you should try to formulate your
local commits on top of the remote repository commits. So use
rebase to put your local commits on top of remote repository
commits and push the changes. To add your local commits on
top of remote repo commits, use the following command:

$ git fetch

$ git rebase -i origin/master

This command will interactively modify the local
commits (master branch) on top of commits from the origin of
the remote repo’s master branch.

Tracking the remote branch on a local branch
It is possible to create a local branch that tracks a remote
branch with the following command:

git checkout -b localbranch remote_repo/newbranch

Fetching changes
The git fetch command is used to download commits from
remote repositories, but it does not attempt to merge the code.
An optional parameter is the repository name, as in git fetch
repo_name.

Stashing changes
Stash is a very interesting feature. When you make local
changes, you may need to switch to some other branch to check
something and come back, but may not want to lose your local
changes that are not yet committed. The git stash command
preserves the current repository state for the current branch
(with every local change) in its memory. The Git stash memory
is a stack -- a LIFO list. To get the stashed state back, you can
first use git stash list to view the contents of the stash memory;
to apply the last stashed item back, use git stash apply.

Displaying objects
The git show command is used to display any object in the Git
repo—commits, blobs, the tree, etc.

Tagging
Marking release versions of code helps you track code
with respect to features or based on different criteria. Git
has the built-in capability to tag different commits with tag
descriptions. To list available tags, use git tag -l. To tag the
current HEAD, use the following command:

$ git tag -a ‘tagname’ -m ‘tag message’ HEAD

To tag a particular commit, use COMMIT_ID instead
of HEAD. To display details about a tag, just use git show

tagname. To push tags to a remote repo, use git push –tags.
To delete a tag from local and remote repos, use the command
given below:

$ git tag -d tag_name // delete local tag

$ git push origin :tag_name // delete tag from remote repository

Creating and using patches
Commits in Git can be represented as a series of diffs or
patches applied one after the other. You can create patches
from commits, email them, and the recipients can apply them
to their repository. To create a patch from COMMIT_ID to the
current HEAD, use:

$ git format-patch COMMIT_ID

This will create a series of .patch files. To apply and create
commits on a repo from these .patch files, use git am patch_file.
patch. To apply the patch’s changes to only modify files locally,
but not create the commits, use git apply patch_file.patch.

Cherry-picking changes
Using Git, it is possible to pick an individual commit from
any branch in the current repo, and try to apply it on top of the
current branch HEAD. This feature is known as cherry-picking.
To cherry-pick a commit, use: git cherry-pick COMMIT_ID.

Creating archives from the repository
It is possible to create a source-code archive from the Git
repository. To create file.tar with all the latest code in the
HEAD, run git archive -o file.tar HEAD.

Cleaning a repository
While working with code, you create lot of temporary files in
the working directory. At some point, you may need to clean
out all the files except those tracked by the Git repository. For
this, use the git clean command.

Migrating an SVN repository to Git
Migrating all code from a Subversion repository without
losing any history is super easy with the following steps.
First, create a users.txt file in the following format, listing the
Subversion users and Git username:

svn_user1 = Git User1 <email>

svn_user2 = Git User2 <email>

Next, initialise the Git repo and do a fetch, as shown
below:

$ git svn init svn_repo_url

$ git config svn.authorsfile users.txt

$ git svn fetch

You just successfully migrated all your code to a Git

www.LinuxForU.com  |  LINUX For You  |  october 2012  |  53

DevelopersIns ight

repository.
You can now add a remote Git repo, and sync your code

to the remote repository as follows:

$ git remote add origin git@github.com:user/my_remote_repo.git

Grepping through files
Searching through source code is a big part of a programmer’s
life, and grep is used extensively for this. Git has an inbuilt
grep command to search through files tracked by the
repository—git grep text.

Git describe
The git describe command describes the current commit
based on the last tagged version. Try git describe and you
may get something like:

1.0-62-g4e975db

This auto description can be interpreted as follows:
•	 1.0 – The recent tag
•	 62 – The HEAD is the 62nd commit after the tagged

commit 1.0
•	 g4e975db – The first eight characters of the HEAD

commit ID.

Integrating with Github
Github is a great Git repository hosting website, which has
lots of facilities to collaborate with many developers on a
project, including features that help to code, integrate, merge
and perform code reviews. Let us go through an example Git
workflow along with GitHub integration.

Example workflow
The following is the most common Git workflow that
everyone uses daily.

$ mkdir myproject # Decided to start a new project

$ git init #Add project as a git repo

Created few files README, main.c. Now I wanted to add those files

to repo

$ git add README main.c

$ git commit –m “Initial commit”

$ git log # View the log for the commit

#Later I want to change the commit message to a more appropriate

one.

$ git commit --amend

$ git diff # I modified main.c. I would like to see the diff

Now I would like to add the changes into two commits

$ git add –p main.c #Interactively select few code chunks and add

Commit the selected changes

$ git commit # vim opens up and we add a commit message such as:

Fix bug-0234 – limit the size of the array

<Blank line>

Description about bug-0234 and fix

#Add rest of the changes to another commit

$ git add main.c

$ git commit

$ git log

Now to sync my repo to a remote (Github) repository I created.

Add a remote repo to current repo

git remote add origin https://github.com/t3rm1n4l/projectname.git

$ git push origin master # Push master branch (Default) to remote

repo

$ git branch –a # List branches

Now, if you want to work on a feature that takes a lot
of time, while some other development goes on in parallel,
create a branch for the feature development as shown below:

$ git branch feature-x

$ git checkout feature-x

To add some changes related to feature-x (such as, adding
a TODO.txt):

$ git add TODO.txt

$ git commit –m “Added TODO for feature-x”

To go back to the master branch and make a few commits
(like adding and changing few files), issue the following
commands:

$ git add core.c

$ git commit –m “Move core functions to core.c”

$ git add main.c

$ git commit –m “Refactor main.c”

If you want to work on feature-x, do a git checkout
feature-x, then add a bunch of files to build the feature, and
then use the following code:

$ git add feature.c main.c core.c

$ git commit (message as follows)

Add feature-x – logger module for xxx

<Blank line>

More description about the feature

Switch back to the master branch to make some more
changes:

$ git checkout master

$ git add README (commit some changes from README)

$ git commit –m “Improve README”

If you then want to merge the feature-x I developed into
the main branch, use the git merge feature-x. However, some

54  |  october 2012  |  LINUX For You  |  www.LinuxForU.com

Developers Ins ight

By: Sarath Lakshman

The author is a Kerala-based hacktivist of Free and Open Source
Software. He loves working on the GNU/Linux environment and
contributes to the Pardus Linux distro project. He has recently
authored the Linux Shell Scripting Cookbook, which gives insights
on shell scripting through 119 recipes. He can be reached via his
website http://www.sarathlakshman.com.

merge conflicts will occur. Fix them by editing the listed files,
and commit them as follows:

$ git add core.c

$ git commit –m “Merge feature-x into master”

Now, to sync the code with the remote repository,
use git push origin master. Then, to delete the feature
branch that is now merged into main, use git branch
–D feature-x. By this time, another developer may also
have joined this project and committed to the remote Git
repository; so to sync back the remote repo to your repo
in order to get his changes from there applied to your
local repo, use git pull.

After making some commits in the local branch, you
may find that git push origin master failed, because the other
developer added a few extra commits to the remote repo. So,
to rebase your code on top of the latest commits from the
remote repo, use the following commands:

$ git fetch

$ git rebase origin/master

This lists some conflicts. Resolve those commits by
editing the listed files manually, and continue the rebase
operation with git rebase –continue. After a successful rebase,
try to push to the remote repo again, by using git push origin
master once again, which will now succeed.

In the meantime, if you have created another branch,
branch-x, which you may want to push to the remote repo,
use git push origin branch-x.

Git is a unique and amazing version control system.
In this article, I have gone through most of the essential
commands. Using Git for hobby projects is the best method
to master good practices. You can learn more of Git by
joining Github.com and exploring it through a social coding
experience. You can use the reference learn.github.com.
Happy hacking, till we meet again.  

www.LinuxForU.com  |  LINUX For You  |  october 2012  |  55

DevelopersIns ight

