
W
e come across numerous
GUI text editors like
KWrite and Gedit, with
which you need to use the

mouse extensively to access some of the
features. Unlike these, Vim doesn’t support
the mouse. Instead, it stays close to the
command-line with extensive key-bindings
support. Many believe this is a feature,
because it facilitates better control over
text processing with simple commands.

Vim is a mode editor. Its three modes
are: INSERT, REPLACE and VISUAL. This
article will focus on how Vim can help get
going with your text editing tasks. If you
are new to Vim, open a terminal session
and type the following command:

$ vim test.txt

This will launch the editor. Press ‘i’
and start writing. You might feel a bit
awkward at this stage since you are more
comfortable with GUI text editors and
probably might think: what’s the point?
Well, Vim has its many advantages. Let’s

create a large file using the dd command,
filled with 0s. Now open that file in
GUI editors like Gedit or KWrite. What
happens? It takes a lot of time to render
the text, and eventually crashes, right?
Now, try to open it with Vim, and see the
difference.

Let us have a roundup of the treasures
of Vim:

Mode-controlled text editing
Regular expressions support
Text replacement, searching, deletion
Auto completion
Auto indentation
Split windows
Multiple file tabs
Syntax colouring
Dictionary
Better help
Sleek and simple

Installing Vim
On most of the distros, Vim is installed by
default. However, if you’re on an Ubuntu
system like me, you’ll need to download a few
extra packages to get the full functionality.













Vim (Vi Improved) is a text editor that is one of the
direct derivatives, and one of the prime ingredients of
the UNIX hacker culture. With its extensive support and
simplicity, Vim stands out as a unique text editor with
numerous features. It’s both simple and powerful!

Vim
Editor Essentials

40  |  May 2009  |  LINUX For You  |  www.LinuxForU.com

Open Gurus  |  How To ___

www.LinuxForU.com  |  LINUX For You  |  May 2009  |  41

__ How To  |  Open Gurus

Open a terminal and run the following command:

$ apt-get install vim-full.

Time to get started now. Open a terminal and type
the command given below:

$ vim

You’ll see something similar to the screenshot in
Figure 1.

To open or create a new file, type…

$ vim filepath

Vim opens in the command mode where it accepts
Vim commands only. To edit the text, press ‘i’ to switch
to Insert mode. Now you can type text. The cursor can
be moved using standard keyboard arrows or using the
keys given in Figure 2.

To exit from the Vim editing mode, press ESC. Now,
to save the changes to the file, type :w ; to save and quit,
type :wq ; and to quit without saving changes, type :q!

Let’s now look at some of the important operating
modes of Vim.

Command mode: We can use different letters or
letter sequences to command Vim operations. Vim
commands are case sensitive. The ESC keystroke can
terminate the command.

Insert mode: When the editor is in Insert mode, on
the footer part you will see the ‘-- INSERT --’ status. To
switch back to command mode, press ESC. Text can be
inserted in this mode. Press ‘i’ to initiate Insert mode. It
is possible to initiate Insert at different portions of the
text. To insert at the next new line, press ‘o’; to insert
at the new line before the current one, press ‘O’; and to
insert at the end of the line, press ‘A’.

Command line mode: In command line mode, we use
commands starting with ‘:’ which will show commands
that we’re tying at the moment, at the footer part of the
editor. For example, :help, :wq, etc.

Basic operations

To open and save files
To open files with Vim, use the following command: vim
file. To open multiple files as split windows, type: $ vim
-O file1 file2. To open a file from the Vim command-line,
use the following: :e file // Auto complete is supported
by pressing TAB.

To save the changes to the currently opened file,
press ESC to switch to the command mode from the
editing mode, then type :w and press ENTER. To exit
Vim after saving a file, type :wq. To just quit without
saving, use :q! To save the current file as a new file, use
the command line :w new_filepath.

Manipulating files
Cut, copy and paste are essential features of any text
editor. To cut the current word, place the cursor at the
starting character of the word and use ‘cw’. To cut the
current line, use ‘cc’ in the command mode. To copy the
current word, place the cursor at the starting letter and
use ‘yw’, while to copy an entire line, use ‘yy’. To paste
content, place the cursor at the position where the
contents of the buffer need to be placed, and press ‘p’.

To remove a word, place the cursor at the starting
letter of the word, and press ‘dw’, while to remove a
line, press ‘dd’, and to remove a character, press ‘x’. To
undo the previous action, press ‘u’, while to redo an
action, ‘Ctrl + r’. To repeat a previously performed task,
press ‘.’ To list the available undo tasks, ‘:undolist’.

To search, substitute and replace
To search for a word/sentence while in the command
mode, type /word and press ENTER, where ‘word’ is
the word you’re searching for. To repeat the search
in the forward direction, press n, while to reverse the
direction of the search, press ?.

To replace a part of the text, use:
:%s/word_pattern/replacement_text/ – replaces 

Figure 1: The Vim editor

Figure 2: Cursor navigation

40  |  May 2009  |  LINUX For You  |  www.LinuxForU.com

Open Gurus  |  How To ___

www.LinuxForU.com  |  LINUX For You  |  May 2009  |  41

__ How To  |  Open Gurus

the first word of every line
:%s/word_pattern/replacement_text/ – global
replacement of the word
:%s/word_pattern/replacement_text/gc –
replacement with interactive Yes/No confirmation
%s represents the entire text in the file. It is also

possible to use a range of lines for replacement. In case
we want to use a replacement only between the lines 1
and 25, the above command can be used as:

:1,25 s/word_pattern/replacement_text/

You can also use regular expressions for
replacement and searching. This is similar to the sed
(stream editor) syntax.

Repeating commands N times
If you want to repeat a specific command N number of
times, prefix the number of times before the command.
For example, to copy the next five lines, use 5yy, where
yy is the command for copying 1 line. To move the
cursor to the eighth word of a line, use ‘8w’.

Selecting text
Vim has an awesome option to select a portion of text,
just as we do using a mouse in GUI-based editors.
The special purpose option is called Visual Mode.





Press ‘v’ in the command mode and navigate the
cursor—the selected text will be highlighted. After
making the necessary selection, press a command for
an operation.

For example, press ‘v’, and make selections by
moving the cursor down and right. For deletion, press
‘d’, or any other required operation.

Advanced Vim features
Vim is an advanced editor that has capabilities
like spell check, auto indentation for different
programming languages, auto-completion, syntax
colouring and more. Syntax colouring and auto
indentation enables programmers to write code in an
artistic way, making the code more pleasing to the eye.
Vim also supports colouring schemes with themes.

Syntax colours and auto indent
To enable syntax colouring, use the command line :
syntax on.

Vim supports many programming languages for
indentation. To enable indentation, use the command
line, :set autoindent. To explicitly enable C syntax
indentation, use :set cindent.

Spell check and auto complete
Vim also supports spell checking. It highlights wrongly
spelled words with a different colour. To enable
spell checking, at the command line, use :setlocal
spell spelllang=en_us, for US English while writing a
document.

For auto completion of a word or a keyword, type
a part of the word and press Ctrl+N, after which a
pop-up will show the list of available words (Figure 3).
You can scroll through the word list by pressing Ctrl+N
repeatedly. Auto completion works for words that have
already been typed previously in the current file.

Install the ctags package if you want inbuilt
auto-completion support for various programming
languages as well.

Split windows
There are certain occasions when you need to work
with multiple files simultaneously. Normally when you
want to refer to the contents of a file while working on
another file, you open two instances of editors open
side-by-side. But Vim is intelligent enough to open
multiple files simultaneously.

To start a horizontal window by splitting the
current Vim instance, use the command Ctrl+w+s, or
at the command line, use :split. For a vertical split, type
Ctrl+w+h, or at the command line, :vsplit. Refer to Figure
4. You can now switch between different split instances
using the Ctrl+w+w shortcut. These multiple splits can
be further split using the same commands. The split
windows act as separate instances of Vim so that we can

Figure 4: Using multiple files side-by-side

Figure 3: Auto completion in Vim

42  |  May 2009  |  LINUX For You  |  www.LinuxForU.com

Open Gurus  |  How To _ __

www.LinuxForU.com  |  LINUX For You  |  May 2009  |  43

__ How To  |  Open Gurus

open and work on different files, side by side.
To exit from a split window, use the Ctrl+w+q

shortcut, or at the command line, use :q!
While we’re on the subject of split windows, there

is a command called vimdiff for viewing the difference
between two files. Suppose you have two versions of a
text file, and you want to look at the changes made and
compare it with the original, use the command:

$ vimdiff file1 file2

When you scroll through the file, both file instances
will be scrolled. Sounds interesting, right? Take a look
at Figure 5.

Vim also supports window tabs. To open a new
tab, at the command line, use :tabnew. Now to
switch between tabs, use the Ctrl+PAGEDOWN or
Ctrl+PAGEUP shortcuts.

Line numbers
In certain cases, especially while writing code or
editing a script, it is convenient to see line numbers
for the text file. To enable line numbers, use the
command :set number. To disable the function, use :set
nonumber.

Execute external commands
While working from Vim itself, you can execute
external commands. To execute and view the output
of a command, at the command line, use :!command,
where ‘command’ is the command you want to
execute. For example, to execute ls, try :!ls

It is also possible to paste the output of the
executed command to the currently working file by
using :r !command. For example, :r ls /

Vim has awesome features to process the contents
of the file using external commands and to paste the
output back to the file. It is also able to process text
between a range of lines.

There are situations when a part of the text needs
to be processed. Vim makes it convenient to process a
given range of lines using external commands.

tr is a utility to perform translations based on the
sequence inputs. We can easily perform translations
such as lower case to upper case conversion using tr as
the following bash command line.

slynux@slynux-laptop:~$ echo “This is a line of text 1234” | tr ‘a-z’ ‘A-Z’

THIS IS A LINE OF TEXT 123

Suppose we have a large text file and the text
between the lines 3-5 is to be converted to upper case.
We can perform it easily using the external commands
methodology like :3,5 !tr ‘a-z’ ‘A-Z’,

which instructs Vim to perform tr ‘a-z’ ‘A-Z’ for the
text between the lines 3-5.

In this way, any kind of external command can be
coupled with Vim to process any part of the text in a
file, in a handy way.

Moving the cursor in a file
Vim enables moving the cursor to different positions
by accepting different references. For programming
tasks, often compile/runtime errors occur and
compiler return errors are noticed with line numbers.
In such cases, we need to move the cursor immediately
to the error line referenced by the line number. To
move to a line referenced by a line number, use :
line_number. For example, to move to line 50 use :50

Essentially, we can also perform some actions using
the corresponding commands:

Move cursor to beginning of line – 0
Move cursor to end of line – $
Move cursor to beginning of next line – +
Move cursor to end of file – G
Scrolling page by page is very useful while dealing

with large files. To do so, use Ctrl+f for forward scroll
and Ctrl+b for backward scroll.

Getting help
Vim has an embedded command line called :help to get
help with different operations. For more information
on making substitutions, use :help substitutions; for
search, use :help search and so on. To quit from help
mode, use :q

If you would like more insights into the Vim editor,
I would like to recommend A byte of Vim written by
Swaroop C H [www.swaroopch.com/notes/Vim].

I guess that’s all for now. Hope you will join our Vim
club soon. Happy hacking, till we meet again! 






By: Sarath Lakshman
The author is a Hacktivist of Free and Open Source
Software from Kerala. He loves working on the GNU/Linux
environment and contributes to the PiTiVi video editor
project. He is also the developer of SLYNUX, a distro for
newbies. He blogs at www.sarathlakshman.info

Figure 5: Files opened using the vimdiff command

42  |  May 2009  |  LINUX For You  |  www.LinuxForU.com

Open Gurus  |  How To _ __

www.LinuxForU.com  |  LINUX For You  |  May 2009  |  43

__ How To  |  Open Gurus

