
S
SH is used to access or log in to a remote
machine on the network, using its hostname or
IP address. It’s a secure network data exchange
protocol that came up as a replacement for

insecure protocols like rsh, telnet, ftp, etc. It encrypts the
bi-directional data transfers using cryptographic algorithms,
making the data transfers secure. Hence, it is free from
password theft or from the sniffing of packets being transferred
over a network.

Some of the highlights of the SSH protocol are:
Compression
Public key authentication
Port forwarding
Tunnelling
X11 forwarding
File transfer
SSH runs as a service daemon to facilitate remote log-ins.








To install the SSH server on Debian-based distros, key in the
following command:

apt-get install openssh-server

Although the default port for SSH is 22, you can also
configure it to run with other custom ports.

To perform remote log-ins, we require an SSH client. There
are lots of SSH clients available, and they can be installed on
Debian-based system as follows:

apt-get install openssh-client.

It is possible to access remote UNIX/Linux machines
from any other OSs using some SSH clients. For example, it is
possible to remotely log in to a UNIX box from Windows using
the SSH client called Putty [www.putty.org].

Here’re some insights into SSH (Secure Shell), an essential tool for accessing remote machines.

Secure
SHell Explained!

40  |  July 2009  | L INUX For You  |  www.LinuxForU.com

Open Gurus  |  How To ___

www.LinuxForU.com  | L INUX For You  |  July 2009  |  41

__ How To  |  Open Gurus

Basic operations
We can remotely log in to a machine by issuing the following
command:

slynux@gnubox:~$ ssh user@hostname

Here, ‘user’ is an existing user on the remote machine
‘hostname’, so you need to replace the two with relevant
information. [You can also use an IP address instead of a
hostname to log in.] Hitting the Enter key now will result in a
prompt for the user’s password; and after entering it, you will
get the remote user’s shell prompt.

Alternately, we can also provide the following command:

slynux@gnubox:~$ ssh hostname

…which is equivalent to:

slynux@gnubox:~$ ssh slynux@hostname

…i.e., if the user name of the one trying to remotely log in
is the same as the current user, there is no need to specify the
user name explicitly.

Sometime systems administrators will configure the SSH
daemon to listen to a non-standard port such as 422, instead of
22. This is done for security reasons—to make it difficult for an
unauthorised person to easily find which post number the SSH
daemon is listing to.

In cases where we need to perform the SSH log-in via a
non-standard port, we can specify the port number explicitly
using the -p option:

slynux@gnubox:~$ ssh -p 422 slynux@hostname

The initial key discovery
When you connect to an SSH server for the first time, you will
be asked to verify the server’s key. When the users continue
confirming ‘yes’, it will attach the server key with the hostname
and store it in the ~/.ssh/known_hosts file. After the initial
probe for the server verification, it will check this known_hosts
file to verify the authority of the server to which the SSH client
is requesting a connection to.

slynux@gnubox:~$ ssh slynux@192.168.1.2

The authenticity of host ‘192.168.1.2 (192.168.1.2)’ can’t be established.

RSA key fingerprint is 6d:92:2c:f1:74:e7:a9:21:64:57:90:6f:72:3e:a3:18.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added ‘192.168.1.2’ (RSA) to the list of known hosts.

slynux@192.168.1.2’s password:

Last login: Sun May 17 21:04:29 2009 from slynux-laptop

slynux@gnubox:~$

This initial key discovery process is to ensure security. It is
possible for an attacker to steal information from the remote
user log-in by impersonating the server, i.e., if the attacker
can provide a server with the same host name and user
authentication, the user connecting from the remote machine
will be logged into a fraud machine and data may be stolen.

Each server will have a randomly generated RSA server key.
To ensure security, in cases where the server key changes,

the SSH client will issue a serious warning reporting that the
host identification has failed and that it will stop the log-in
process.

slynux@gnubox:~$ ssh slynux@192.168.1.2

@@

@@@@@@@@@@@@@

@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @

@@

@@@@@@@@@@@@@

IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!

Someone could be eavesdropping on you right now (man-in-the-middle attack)!

It is also possible that the RSA host key has just been changed.

The fingerprint for the RSA key sent by the remote host is

40  |  July 2009  | L INUX For You  |  www.LinuxForU.com

Open Gurus  |  How To ___

www.LinuxForU.com  | L INUX For You  |  July 2009  |  41

__ How To  |  Open Gurus

cd:41:70:30:48:07:16:81:e5:30:34:66:f1:56:ef:db.

Please contact your system administrator.

Add correct host key in /home/slynux/.ssh/known_hosts to get rid of this

message.

Offending key in /home/slynux/.ssh/known_hosts:24

RSA host key for localhost has changed and you have requested strict checking.

Host key verification failed.

If we’re certain about the key identification chance of the
remote machine, we can remove the corresponding server
key entry from our ~/.ssh/known_hosts file. Following which,
the next time you try to log in, you will be asked for a key
verification again and the server key will be again registered in
the known_hosts file.

Executing remote commands
The main purpose of SSH is to execute commands remotely.
As we have already seen, immediately after a successful SSH
log-in, we’re provided with the remote user’s shell prompt from
where we can execute all sorts of commands that the remote
user is allowed to use. This ‘pseudo’ terminal session will exist
as long as you’re logged in.

It is also possible to execute commands on a one-at-a-time
basis without assigning a pseudo-terminal, as follows:

slynux@gnubox:~$ ssh slynux-laptop ‘uname -a’

slynux@slynux-laptop’s password:

Linux slynux-laptop 2.6.28-9-generic #31-Ubuntu SMP Wed Mar 11 15:43:58 UTC

2009 i686 GNU/Linux

slynux@gnubox:~$

Note that we’re back at our local shell prompt. The syntax
is: ssh user@hostname ‘commands in quote’.

Input/output redirection
Piping is a nifty feature provided by the shell. If you aren’t
already familiar with it, have a look at the basics of piping in
the following section.

Piping is used for input and output redirection. In
*nix shells, we can redirect input/output in different
ways, as follows:

echo “Test” > file

Here the output text stream (“Test”) is directed to a file.
Thus the stream is stored to a file named file. ‘>’ is the output
redirection operator.

Now, take a look at the following command:

cat < file

Here, input is directed to the cat command. cat performs
the concatenation of the input stream. Here the input is a file
named file. ‘<’ is an input redirection operator that directs the
input stream to the specified command. Here it directs the
input text stream from the file to the cat.

Finally, take a look at the following command:

echo hello | command1 | command2

Here, ‘|’ is the piping operator. It uses the output of one
command as the input of another. We can use any number
of pipes serially, i.e., the output of one command appears as
the input of another, and the output of this second command
appears as the input of the third command and so on. Thus,
the net result will be a serial application of these commands on
data, one after the other.

For example:

slynux@slynux-laptop:~$ echo “hello” | tr -d ‘l’

“heo”

All of the above input/output redirection operations can
also be performed using SSH commands. Let us look at the
possibilities:

slynux@gnubox:~$ ssh slynux-laptop ‘cat /etc/passwd | grep root’

slynux@gnubox:~$ ssh slynux-laptop ‘cat /etc/passwd’ > file.txt

slynux@gnubox:~$ ssh slynux-laptop ‘cat > directed.txt’ < file.txt

You can also club compression utilities along with SSH:

slynux@gnubox:~$ ssh slynux-laptop ‘tar -czf - file.txt’ > file.tar.gz

In the above command, we have used tar -czf to create a
tarball file. ‘tar -czf - file.txt’ has - [hyphen] as the file name.
When a hyphen is provided as a filename, it implies that
the output is not written to a file; instead, it is redirected to
standard output.

Now, to list the files in the compressed archive, run the
following command:

slynux@gnubox:~$ tar -ztf file.tar.gz

file.txt

The SSH protocol also supports data transfer with
compression—which comes in handy when bandwidth is
an issue. Use the -C option with the ssh command to enable
compression:

slynux@gnubox:~$ ssh -C user@hostname

File transfer
SSH also offers the file transfer facility between machines on
the network and is highly secure, with SSH being an encrypted
protocol. Also, the transfer speed can be improved by enabling
compression. Two significant data transfer utilities that use the
SSH protocol are SCP and SFTP.

SCP stands for Secure Copy. We can use it to copy
files from a local machine to a remote machine, a remote
machine to a local machine, and a remote machine to
another remote machine.

42  |  July 2009  | L INUX For You  |  www.LinuxForU.com

Open Gurus  |  How To _ __

www.LinuxForU.com  | L INUX For You  |  July 2009  |  43

__ How To  |  Open Gurus

For the local machine to remote machine file transfer,
we use the following:

scp local_file_path user@remote_host:destination_file_path

For a remote machine to local machine transfer:

scp user@remote_host:remote_file_path local_file_path

For a remote machine to remote machine transfer:

scp user1@remote_host1 user2@remote_host2

You can even use wildcards to select files:

scp :/home/slynux/*.txt /home/gnubox/scp_example/

SFTP stands for Secure File Transfer Protocol. It is a
secure implementation of the traditional FTP protocol with
SSH as the backend. Let us take a look at how to use the sftp
command:

sftp user@hostname

For example:

slynux@slynux-laptop:~$ sftp slynux-laptop

Connecting to slynux-laptop...

slynux@slynux-laptop’s password:

sftp> cd django

sftp> ls -l

drwxr-xr-x 2 slynux slynux 4096 Apr 30 17:33 website

sftp> cd website

sftp> ls

__init__.py __init__.pyc manage.py settings.py settings.pyc

urls.py urls.pyc view.py view.pyc

sftp> get manage.py

Fetching /home/slynux/django/website/manage.py to manage.py

/home/slynux/django/website/manage.py 100% 542 0.5KB/s 00:01

sftp>

If the port for the target SSH daemon is different from the
default port, we can provide the port number explicitly as an
option, i.e., -oPort=port_number.

Some of the commands available under sftp are:
cd—to change the current directory on the remote
machine
lcd —to change the current directory on localhost
ls—to list the remote directory contents
lls—to list the local directory contents
put—to send/upload files to the remote machine from the
current working directory of the localhost
get—to receive/download files from the remote machine to
the current working directory of the localhost
sftp also supports wildcards for choosing files based

on patterns.











SSH over GUI file managers
In GNOME, we can use the SSH protocol to navigate remote
filesystems in the Nautilus file manager. It works as a GUI
implementation of sftp. Type ssh://user@hostname[:port] at
the address bar. It will prompt you for the password of the
‘user’ and then mount the remote filesystem. After that, we can
navigate the filesystem just as with locally mounted disk data.

As for KDE users, you can use the fish protocol in Dolphin
or Konqueror to browse remote filesystems. Type fish://user@
hostname[:port] in the location bar and press Enter. It will
again prompt for the remote user’s password.

Running XWindow applications remotely
Well, the good news is that SSH is also a good enough protocol
that can aid you to run applications other than terminal
utilities remotely, with the help of X11 forwarding. To enable
X11 forwarding, add the following line in /etc/ssh/ssh_config,
the configuration file.

ForwardX11 yes

Now to launch the GUI apps remotely, execute ssh
commands with the -X option. For example:

ssh -X slynux-laptop ‘vlc’

Port forwarding
One of the significant uses of SSH is port forwarding. SSH
allows you to forward ports from client to server and server to
client. There are two types of port forwarding: local and remote.
In local port forwarding, ports from the client are forwarded
to server ports. Thus the locally forwarded port will act as the
proxy port for the port on the remote machine.

To establish local port forwarding, use the following code:

ssh -L local_port:remote_host:remote_port

For example:

ssh -L 2020:slynux.org:22

Here, it forwards local port 2020 to slynux.org’s ssh port 22.
Thus, we can use:

ssh localhost -p 2020

…instead of:

ssh slynux.org

In remote port forwarding, ports from the server are
forwarded to a client port. Thus ports on the remote host will
act as the proxy for ports on the local machine.

The significant application of remote forwarding is
that, suppose you have a local machine that lies inside an
internal network connected to the Internet through a router

42  |  July 2009  | L INUX For You  |  www.LinuxForU.com

Open Gurus  |  How To _ __

www.LinuxForU.com  | L INUX For You  |  July 2009  |  43

__ How To  |  Open Gurus

or gateway—if we want to access the local machine from
outside the network, it is impossible to access it directly. But by
forwarding the local ports to a remote host, we can access the
local machine through ports of the remote host.

Let’s see how remote port forwarding is executed:

ssh -R remoteport:remotehost:localport

For example:

ssh -R 2020:slynux.org:22

To SSH to the local machine from outside the internal
network, we can make use of slynux.org as ssh slynux.org:2020.

SOCKS4 proxy
SSH has an interesting feature called Dynamic Port forwarding
with which the SSH TCP connection will work as a SOCKS4
proxy. By connecting to the given port, it handles SOCKS data
transfer requests.

An important application of Dynamic Port forwarding is
the following case.

Let’s suppose you have a machine on a network that is
connected to the Internet and you have another machine
on the same network that does not have any Internet
connection. By using SSH Dynamic port forwarding, you
can easily access the Internet by setting up the machine
with an Internet connection to act as the SOCKS4 proxy
using an SSH tunnel.

For dynamic port forwarding, use the following command:

ssh -D 3000 remotehost

Now, in your browser, specify proxy settings as:
SOCKS4
host: localhost
port: 3000
To enable the DNS service in Firefox, navigate the about:

config page and set…

network.proxy.socks_remote_dns = true

Automatic key authentication
Each time you access the other machine for the remote
execution of some command, it probes for the password.
This is not desirable when we need to automate tasks. If we
need to shut down or reboot all the machines on the LAN,
it is impractical to type the user password for command
execution on each of the machines. There should be some
mechanism that handles automatic authentication without
probing for a password.

The solution for this hurdle is public key authentication,
for which we will generate a public key from the machine
we need to execute remote commands. That public key will
be copied to each of the remote machines. Thus each time
when we execute remote commands, it will perform a user





authentication by verifying the public key and it no more
probes for the passwords.

Generate the public key as follows:

slynux@slynux-laptop:~$ ssh-keygen -t rsa

Generating public/private rsa key pair.

Enter file in which to save the key (/home/slynux/.ssh/id_rsa):

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /home/slynux/.ssh/id_rsa.

Your public key has been saved in /home/slynux/.ssh/id_rsa.pub.

The key fingerprint is:

0e:04:3d:e3:2a:54:8c:47:ae:10:9a:96:41:be:c1:8f slynux@slynux-laptop

Now we have the public key in the file ~/.ssh/id_rsa.pub.

slynux@slynux-laptop:~$ cat .ssh/id_rsa.pub

ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAQEAuj6N7/juQ8CUtdmFP816Xn4iEI

j73pO7+xHPgIBFZGgxg8yeYZmU7zBjCUAcSXx/NhRiF7YytozhvWk+n92DBFL6

U62lrukqtB/WdZRHh2w1JH4adC3hCDSlJglaxt5WoZK4aFzjGRCbdTBxC2rELQu

u9z9qowzQ8bU3WdO8UK0+U0/u8XSWXvWE4W2THAlWFTRjp+KDX33Ms9u

IYyx/h3Tx5voPSxV6cYBZfh5kJMzEoYDBCUpua6uHV4zDfJFNnN6Sdpt3213FY/

cGRvT1vBCRDSmQd0Xkq2hU8npCfz0rQjXqGPuuzfVW8Ie6yRQQPtqXc3/

J5UMglgumgDgw== slynux@slynux-laptop

To implement auto authentication, append the public
key in the ~/.ssh/authorized_keys file in each of the remote
machines where we need to perform auto authentication.

Appending the key can be performed manually or it can be
automated using an ssh command as follows:

ssh remote_host “cat >> .ssh/authorized_keys” < ~/.ssh/id_rsa.pub

Finally, let us write a single loop shell script to reboot all the
switched-on machines in the network.

#!/bin/bash

base_ip=”192.168.0.” ;

for machine in $base_ip{1..255};

do

	 ping -c2 $machine &> /dev/null ;

	 if [$? -eq 0];

	 then

		 ssh $machine reboot ;

	 fi

done

That’s it about the secure shell. Hope you enjoyed this
tutorial. Till we meet again, happy hacking! 

By: Sarath Lakshman
The author is a FOSS enthusiast interested in QT programming
and technology. He is fond of reviewing the latest OSS tools
and distros.

44  |  July 2009  | L INUX For You  |  www.LinuxForU.com

Open Gurus  |  How To _ __

