
Sed has a few powerful data structures and operators,
which enable you to perform complex text-manipulation
operations. Let’s look at some of them.

Pattern space (p and P)
Pattern space is a memory area where sed copies a matched
line or text first, before performing operations on it. Text-
manipulation operations are (always) performed (only) on
the contents of this pattern space. By default, the pattern
space consists of a single line, copied as the line is read in.
However, you can add multiple lines into the pattern space
using line-reader operators. The ‘p’ operator is used to print
the entire pattern space. P is an operator like p, but it prints
the content of the pattern space up to the first \n character that
is found. To make this clear: let’s have ‘line1\nline2 ‘ in the
pattern space; then p prints both lines, but P prints only the
first line.

Line readers n and N
The n operator is used to explicitly read a line. When used in
a sed script, it reads a new line from the input, and replaces
the current line in the pattern space. Let’s try an example:

$ seq 10 | sed -n ‘n;p’

2

4

6

8

10

When sed reads the first line, ‘n’ explicitly replaces the
contents of the pattern space with the second line, before it
is printed with p. Similarly, when sed reads the third line, ‘n’
explicitly reads in the fourth line, which is printed.

The second line-reader operator, N, appends the newly
read line to the pattern space. Hence, the pattern space
will contain current_line\nread_line. This is very useful to
perform operations on multiple lines. For example:

$ seq 10 | sed -n ‘N; s/\(.*\)\n\(.*\)/\2\n\1/; p’

2

1

4

3

6

5

8

7

10

9

Here, on each execution for a line, ‘N’ is executed. Hence,
in the first execution, the pattern space will be 1\n2 ; in the
second execution, it will be 3\n4 and so on. The substitution
operation is used to change the order of lines. The first and
second lines are swapped with a \n in between. The first \
(.*\) matches the first line, while the second \(.*\) after a \n
matches the second line. In the replacement part, \2\n\1 is
used to change the order.

Continuing from last month's article on the subject, we now proceed to Sed data
structures and operators.

Part—2

78 | June 2011 | LInuX For You | www.LinuxForu.com

Open Gurus Let 's Try

Line deletion (d and D)
The ‘d’ operator is used to delete all data in the pattern space.
For example:

$ seq 4 | sed ‘3 d’

1

2

4

The D operator also performs a deletion operation, but
it removes the data in the pattern space until the first \n
character is found. For instance, let’s suppose we have the
data ‘line1\nline2\nline3’ in the pattern space; when D is
applied, the content of pattern space becomes ‘line2\nline3’.

Any statement that comes after a d or D in the sed script
will not be executed; it skips the following commands, and
starts the next iteration.

Hold buffer (h and H) and exchange operation (x)
The hold buffer is a special storage location, like the pattern
space. You can copy the contents of the pattern space to this
storage area. When ‘h’ is used, it replaces the current content
of the hold buffer with a copy of the pattern space. When ‘H’
is used, a copy of the pattern space will be appended to the
contents of the hold buffer.

When you need to move the contents of the hold
buffer back to the pattern space to work on it, use the
exchange (‘x’) operator, which swaps the contents of the
hold buffer and the pattern space. If you swap again, the
pattern space will contain the original data. Let’s look at
a simple example:

File lines.txt:

line 1

line 2

line 3

line 4

line 5

Now, you need to store the first line in the hold buffer, and
not print it out. When sed reaches the end-of-file, it should
print the first line instead of the last line:

$ sed -n ‘1{h; n} ;$x;p’ lines.txt

line 2

line 3

line 4

line 1

In the above script, 1{h; n} says that when the line number
is 1, execute the group {h;n}. The group uses the copy-to-
hold-buffer operator ‘h’ and the read-next-line operator ‘n’.
$x says that when sed reaches the last line ($), exchange the

hold buffer and the pattern space contents, so that the pattern
space will contain the (earlier-stored) first line. The operator
‘p’ is used to print the pattern space for every execution.

Get operator (g and G)
In the case of the hold buffer, when you needed to copy
its contents to the pattern space, you used the exchange
(‘x’) operator to swap the contents of the hold buffer and
the pattern space. Additionally, the get operator (‘g’) can
be used to copy the hold buffer contents to the pattern
space, deleting the contents of the pattern space while
doing so. The ‘G’ operator appends the contents of the
hold buffer to the pattern space, instead of deleting the
pattern space’s contents and replacing it with the hold
buffer’s content. Let’s use the file lines.txt to illustrate
the example:

$ cat lines.txt | sed -n ‘$p; h;n;G;p;’

line 2

line 1

line 4

line 3

line 5

In the above script, swap two consecutive lines, using G
and h.

Operator Effect

$p Prints the pattern space when the last line is
reached.

H Copies the pattern space to the hold buffer.

N Reads the next line into the pattern space.

G Appends the hold buffer contents to the pat-
tern space.

P Prints the current pattern space.

The above sequence is executed iteratively until end-of-
file is reached.

Flow control with labels; and testing with ‘t’
You would never expect sed to support looping of
statements. Yes, it has a branching command, ‘b’, which
can jump to a label specified as :labelname. Branching can
be performed by using ‘b labelname’. If the label is not
specified, it will branch to the end of the sed script. There
is an additional operator called test (‘t’), which is used for
conditional jumps. Otherwise, identical to ‘b’, ‘t’ is different
in that the branching will occur only if the last statement
executed successfully??????. For branching with b, you may
need to explicitly quit from script execution with the ‘q’
operator, since otherwise, it never ends the execution loop.
Let’s go through an example to test whether a string is in the
format AnBn.:

www.LinuxForu.com | LInuX For You | June 2011 | 79

Open GurusLet 's Try

$ echo AAABBB | sed ‘:again ; s/A\(.*\)B/\1/; t again ; s/^$/

TRUE/; t ; s/.*/FALSE/’

TRUE

$ echo AAABBBB | sed ‘:again ; s/A\(.*\)B/\1/; t again ; s/^$/

TRUE/; t ; s/.*/FALSE/’

FALSE

Let’s go through the above sed script, part by part.

s/A\(.*\)B/\1/ Removes the outer A and B. On the first
operation, AAABBB will become AABB.

:again A label that is used as the target of the t
jump operator.

t again If the substitution operation s/A\(.*\)B/\1/
succeeds, it jumps to the label again,
and executes from there.

s/^$/TRUE/; t ; If the current pattern space is empty, set
the pattern space to TRUE. The t ; says
that if the substitution operation suc-
ceeds, jump to the end of the script.

s/.*/FALSE/’ If the previous ‘t’ test fails, replace the
pattern space with FALSE.

A few cool scripts
We have gone through the essential components and
features of sed. Now let us go through a few nice examples
of sed scripts.

Emulating the tac command
The tac command is used to print input lines in the reverse
order. You can perform the reversal of lines by pushing the
lines in a stack data-structure, and when it reaches the end,
start popping and printing lines, one by one. Using sed, we
can manipulate stack operations with h and G.

sed -n ‘1!G; h ; ${ x; p }’ filename

1!G Execute G when it is not the first line.
h Copy the contents of the pattern buffer to

the hold buffer.
${ x; p } When the last line is reached, exchange the

hold buffer contents to the pattern buffer,
and print them out.

When G is applied, it appends the hold buffer contents
to the pattern space. It is again pushed to the hold buffer,
and the next time, again appended with the pattern space.
Thus, a stack push operation is implemented.

Checking for palindrome

$ echo malayalam | sed ‘:again ; s/\(.\)\(.*\)\1/\2/; t again ;

By: Sarath Lakshman

The author is a hacktivist of Free and Open Source Software
from Kerala. He loves working on the GNU/Linux environment,
and contributes to the Pardus Linux distro project. He has
recently authored the Linux Shell Scripting Cookbook, which
gives insights on shell scripting through 119 recipes. He can
be reached via his website, http://www.sarathlakshman.com.

s/^.\?$/TRUE/; t ; s/.*/FALSE/’

TRUE

This palindrome-check script is a slight modification
of the example given in the flow controls with the labels
section. Try to dissect it yourself.

Reversing words in a line

$ echo this is a line | sed ‘/\n/!G; s/\(\w*\) \(.*\n\)/&\2

\1/; //D; s/\n//;’

line a is this

In this script, we again use a type of stack push-
and-pop operations. Let us dissect the script. Initially,
if the contents of the pattern space do not contain \n, it
appends the contents of the hold buffer to the pattern
space. The hold buffer initially contains the \n character.
Then the current pattern space is replaced with the
current pattern space appended with the first word, and
the rest of the text in the reversed order. Subsequently
// matches the current pattern space if not empty, and
deletes up to the first occurrence of \n, and the next
iteration begins. At the end, an additional \n is replaced,
and printed to get reversed words in the line.

Emulating the tail command
The tail command (by default) prints the last 10 lines
of a text file. Let us look at how to keep 10 lines in the
memory of sed as it processes lines:

$ seq 100 | sed ‘$q; :start; N ; 11,$D ; b start’

In this script, N is used to append newly read lines
to the pattern space. It is iterated in a loop using a
branch with the label start. From lines 11 to the last
line, it deletes a line at the start of the pattern space, up
to the first \n, so that the total lines in the pattern space
will always be 10. Hence, when sed reaches the last
line, it quits ($q) and prints the pattern space.

We have covered most of the basic use of sed,
with the text processing capabilities of the stream
editor. For more information, there is a sed one-liner
collection, written by the community at http://sed.
sourceforge.net/sed1line.txt. Happy hacking till we
meet again!

80 | June 2011 | LInuX For You | www.LinuxForu.com

Open Gurus Let 's Try

