
84  |  March 2009  |  LINUX For You  |  www.openITis.com

Open Gurus  |  Let's Try Let's Try  |  Open Gurus

I
  nter-process Communication
(IPC) helps applications to talk to
each other. You might have seen
Firefox automatically tuned to

offline mode when your Internet connection
is down. Ever wondered how this happens?
This is because the NetworkManager
application talks to Firefox using a back-end
utility called D-Bus to update it on the status
of the Internet connection.

D-Bus (Desktop Bus) is a simple IPC,
developed as part of freedesktop.org project.
It provides an abstraction layer over various
applications to expose their functionalities
and possibilities. If you want to utilise some
feature of an application to make another
program perform a specific task, you can
easily implement it by making the process
D-Bus aware. Once an application is made D-
Bus compliant there’s no need to recompile

or embed code in it to make it communicate
with other applications.

One thing really cool about D-Bus is
that it helps developers write code for any
D-Bus compliant application in a language
of their choice. Currently, D-Bus bindings are
available for C/C++, Glib, Java, Python, Perl,
Ruby, etc.

Understanding D-Bus
D-Bus is a service daemon that runs in the
background. We use bus daemons to interact
with applications and their functionalities.
The bus daemon forwards and receives
messages to and from applications. There are
two types of bus daemons: SessionBus and
SystemBus.

The daemon that is attached to each
user session is called SessionBus. When a
user logs in, applications launched by him

D-Bus is an inter-process communication (IPC) system that helps applications
communicate with one another. This article explains D-Bus and talks about nifty
tips and tricks to play with...

The Smart, Simple, Powerful IPC
D-Bus

Open Gurus  |  Let's Try Let's Try  |  Open Gurus

www.openITis.com  |  LINUX For You  |  March 2009  |  85

are attached to the SessionBus – a local bus limited to
communicating between desktop applications that belong
to a specific user logged in.

On the contrary, SystemBus is system-wide. It is
initiated when the system boots, and is ‘global’ to the
operating system. It is capable of interacting with the
kernel and various system-wide events. Hardware
Abstraction Layer (HAL), NetworkManager and udev are
applications that use SystemBus.

In this article, I will use Python bindings to explore the
D-Bus daemon. To begin with, if we want to use a desktop-
level conversation, a SessionBus object can be created as
follows:

[slynux@slynux-laptop DBus-python-0.83.0]$ python

Python 2.5.2 (r252:60911, Sep 30 2008, 15:41:38)

[GCC 4.3.2 20080917 (Red Hat 4.3.2-4)] on linux2

Type “help”, “copyright”, “credits” or “license” for more information.

>>> import DBus

>>> bus = DBus.SessionBus()

>>>

While a SystemBus, on the other hand, can be created
by simply replacing the DBus.SessionBus() element in the
above code to DBus.SystemBus():

>>> bus = DBus.SystemBus()

Every application that intends to share its objects and
methods are started as D-Bus services. A D-Bus -enabled
application exports its objects with their functionalities as
methods that other applications can use. By connecting
to the corresponding bus and the application object, the
application’s functionalities can be accessed from the other
applications.

We use an addressing method to identify each
application and its functionalities—reversed domain name
addressing. For example, NetworkManager is addressed as
‘org.freedesktop.NetworkManager’, Pidgin as ‘org.gnome.
Pidgin’, etc.

Each of the applications can export numerous objects
and functions—that is, NetworkManager has got different
parameters such as ‘if network is up or down’, ‘the current
active wifi profile’, etc.

Proxy objects and interfaces
The term ‘proxy objects’ refers to objects that point to
remote applications and are accessed through D-Bus
session. Let’s explore how to create proxy objects.

To obtain a proxy object, call the get_object method
on the Bus. For example, NetworkManager has the
well-known name org.freedesktop.NetworkManager and
exports an object whose object path is /org/freedesktop/
NetworkManager, plus an object per network interface
at object paths like /org/freedesktop/NetworkManager/
Devices/wlan0.

>>> import DBus

 >>> bus = DBus.SystemBus()

 >>> proxy_object = bus.get_object(‘org.freedesktop.NetworkManager’,’/

org/freedesktop/NetworkManager’)

The format of the parameters for get_object() is
get_object(DBus_service_name,object_path). So, you
can see from the above code snippet, org.freedesktop.
NetworkManager is the service name and /org/
freedesktop/NetworkManager is the object path. The
object path is different for accessing different objects
specified by the service. Here a proxy object referring
to the NetworkManager is created. Now it is possible to
access different properties of this object. For example, we
can check whether the NetworkManager is in sleep or
wake mode, or if it is connected to some network or not, as
follows:

>>> print proxy_object .state() # To know the NM state

4

The returned integer in the above example is called the
NM_STATE. This corresponds to following states:

‘NM_STATE_UNKNOWN = 0’ means the
NetworkManager daemon is in an unknown state.
‘NM_STATE_ASLEEP = 1’ means the NetworkManager
daemon is asleep and all interfaces managed by it are
inactive.
‘NM_STATE_CONNECTING = 2’ means the
NetworkManager daemon is connecting a device.
‘NM_STATE_CONNECTED = 3’ means the
NetworkManager daemon is connected.
‘NM_STATE_DISCONNECTED = 4’ means the
NetworkManager daemon is disconnected.











Desktop

SessionBus

Pidgin Rythmbox F-Spot

Figure 1: D-Bus SessionBus

Kernel

udev NetworkManager hal

SystemBus

Figure 2: D-Bus SystemBus

Open Gurus  |  Let's Try

86  |  March 2009  |  LINUX For You  |  www.openITis.com

 Let's Try  |  Open Gurus

Let’s take a look at the following code:

>>> proxy_object.sleep() # Disable NetworkManager

>>> proxy_object.wake() # Enable NetworkManager

>>> proxy_object.GetDevices()

DBus.Array([DBus.ObjectPath(‘/org/freedesktop/Hal/devices/net_00_1c_23_

fb_37_22’), DBus.ObjectPath(‘/org/freedesktop/Hal/devices/net_00_1c_bf_

87_25_d2’)], signature=DBus.Signature(‘o’))

You can see that the code lists objects of two network
interfaces with MAC ID 00:1c:bf:87:25:d2 and 00:1c:23:
fb:37:22 along with their HAL object paths. DBus.Array is
a D-Bus object specific data type. We’ll discuss more on
D-Bus types is in the later part of the article.

An object path can support any number of different
interfaces. Before calling any method, you need to specify
which interface you want to use. Interfaces are sub-objects
that can be used to refer to a group of other objects to
provide a higher level of abstraction on proxy objects
and their exported methods. It provides a name-spacing
mechanism. You can have a better understanding of the
concepts of Interfaces from Figure 3.

Take a look at the following code:

 >>> bus=DBus.SystemBus()

 >>> proxy_object=bus.get_object(‘org.freedesktop.NetworkManager’,

‘/org/freedesktop/Hal/devices/net_00_1c_bf_87_25_d2’)

>>> proxy_object.GetAccessPoints(DBus_interface=’org.freedesktop.

NetworkManager.Device.Wireless’)

DBus.Array([DBus.ObjectPath(‘/org/freedesktop/NetworkManager/

AccessPoint/4’)], signature=DBus.Signature(‘o’))

Above method returns with a DBus Array type containing object path

of currently avaliable access points. DBus_interface=’org.freedesktop.

NetworkManager.Device.Wireless’

>>> proxy_object.Get(‘/org/freedesktop/Hal/devices/net_00_1c_23_fb_37_

22’,’HwAddress’,DBus_interface=’org.freedesktop.DBus.Properties’)

DBus.String(u’00:1C:23:FB:37:22’, variant_level=1)

It returns Hardware Address of the Interface. DBus_interface=’org.

freedesktop.DBus.Properties’)

Here we have used two different interfaces under the
same object path. The D-Bus bindings provide an object
type of Dbus.Interface, making it easier to interpret. We
can rewrite the above code as follows:

 >>> hw_address_interface = DBus.Interface(proxy_object,DBus_

interface=’org.freedesktop.DBus.Properties’)

>>> hw_address_interface .Get(‘/org/freedesktop/Hal/devices/net_00_1c_

23_fb_37_22’,’HwAddress’

Even though both are same, it eliminates the need for
specifying the interfaces parameter DBus_interface every
time we call a method.

The D-Bus package comes with a set of utilities to
manage the D-Bus daemon activities. The DBus-monitor
is one such utility that is used to keep track of all active D-
Bus sessions in a running system. It helps you be aware of
the applications that make use of D-Bus and its events:

[slynux@slynux-laptop ~]$ DBus-monitor

signal sender=org.freedesktop.DBus -> dest=:1.134 path=/org/freedesktop/

DBus; interface=org.freedesktop.DBus; member=NameAcquired

 string “:1.134”

method call sender=:1.134 -> dest=org.freedesktop.DBus path=/org/

freedesktop/DBus; interface=org.freedesktop.DBus; member=AddMatch

 string “type=’method_call’”

method call sender=:1.134 -> dest=org.freedesktop.DBus path=/org/

freedesktop/DBus; interface=org.freedesktop.DBus; memtber=AddMatch

 string “type=’error’”

signal sender=:1.54 -> dest=(null destination) path=/im/pidgin/

purple/PurpleObject; interface=im.pidgin.purple.PurpleInterface;

member=BuddyIconChanged

 int32 24422

signal sender=:1.54 -> dest=(null destination) path=/im/pidgin/

purple/PurpleObject; interface=im.pidgin.purple.PurpleInterface;

member=DrawingTooltip

The utility gives you an overview of the different D-Bus
events and the applications using D-Bus. As you can see in
the output, an event related to Pidgin ‘BuddyIconChanged’
along with some other D-Bus events has taken place.

DBus-launch and DBus-sendto are other two utilities
available for working with D-Bus. Check out their man
pages to understand the purpose of these utilities. DBus-
sendto can be used to interact with the buses and their
return strings. It can be used if we want to write pure Bash-
coded applications.

D-Bus activation
We can start a D-Bus service such as org.gnome.example_
service from a server program or we can start a service
by calling it by name. The technique of starting a service
by name is called D-Bus activation. There are several
instances where we need to start another application to
make some feature of the currently running application
work. For example, consider a video editor which extracts

Figure 3: Different interfaces provided by same object

Open Gurus  |  Let's Try Let's Try  |  Open Gurus

www.openITis.com  |  LINUX For You  |  March 2009  |  87

still images from the GNOME Web cam tool
Cheese. Since the video editor needs Cheese to be
running, it needs to be started. If Cheese is defined
as a D-Bus service, we can easily start Cheese by
D-Bus activation.

Most of the applications which make use of
D-Bus are defined as D-Bus services. You can have
a look at the contents of the /usr/share/DBus-1/
directory for the some available services:

[slynux@slynux-laptop services]$ ls /usr/share/DBus-1/services/

| tail

org.gnome.keyring.service

org.gnome.PolicyKit.AuthorizationManager.service

org.gnome.PolicyKit.service

org.gnome.Rhythmbox.service

org.gnome.SettingsDaemon.service

org.gnome.Tomboy.service

org.gtk.Private.GPhoto2VolumeMonitor.service

org.gtk.Private.HalVolumeMonitor.service

org.xchat.service.service

sealert.service

Each of these services can be started by using
the start_service_by_name() method.

For example, the Tomboy note-taking
application can be launched by running the
following from a Python shell:

>>> import DBus

>>> bus=DBus.SessionBus()

>>> bus.start_service_by_name(‘org.gnome.Tomboy’)

(True, DBus.UInt32(1L))

You can see that Tomboy is started and the function
returns True.

In fact, it is very easy to create D-Bus services. Create a
text file, called org.gnome.Newservice.service for example,
with following contents:

[D-BUS Service]

Name=org.gnome.Newservice

Exec=/usr/bin/newservice

Now you can start Newservice by name.

Data types and type casting
Since D-Bus is an inter-process message passing
mechanism, it deals with various data types, depending on
the data to be received or sent. One of the primary benefits
of D-Bus is that it is flexible with data type conversions.
Since we are more concerned with D-Bus in Python’s
context, let us take a look at how D-Bus types and Python
types are tuned to each other with auto typecasting. D-Bus
uses static types. Since Python types and D-Bus types are
compatible to each other, we never have to worry about

type conversion hurdles.
Table 1 lists the types supported and their conversions.
Types marked (*) may be a subclass of either int or

long, depending on the platform.
From the above table, you can infer that if we have

some string to be passed or received through D-Bus
daemon, it is received or sent as its equivalent D-Bus type.
Likewise, string is send as DBus.String(“string”).

We can call methods provided by the proxy object
in two ways – synchronous call or asynchronous call.
Synchronous calls block any other methods to be called
until the current function call ends and returns something.
Asynchronous (non-blocking) method calls allow multiple
method calls to be in progress simultaneously, and allow
your applications to do other work while it waits for
results/answers. Asynchronous calls are invoked by setting
up an event loop like Gmainloop or gtk.main().

Hands-on D-Bus client-server
Let us code a simple ExampleObject to be exported under
the org.example.Sample service and a client application, to
understand programming with D-Bus better:

D-Bus service: org.example.Sample

Lists D-Bus types supported and their conversions

Python type Converted to D-Bus type Notes
D-Bus proxy object ObjectPath (signature ‘o’) (+)
DBus.Interface ObjectPath (signature ‘o’) (+)
DBus.service.
Object

ObjectPath (signature ‘o’) (+)

DBus.Boolean Boolean (signature ‘b’) a subclass of int
DBus.Byte byte (signature ‘y’) a subclass of int
DBus.Int16 16-bit signed integer (‘n’) a subclass of int
DBus.Int32 32-bit signed integer (‘i’) a subclass of int
DBus.Int64 64-bit signed integer (‘x’) (*)
DBus.UInt16 16-bit unsigned integer (‘q’) a subclass of int
DBus.UInt32 32-bit unsigned integer (‘u’) (*)_
DBus.UInt64 64-bit unsigned integer (‘t’) (*)_
DBus.Double double-precision float (‘d’) a subclass of

float
DBus.ObjectPath object path (‘o’) a subclass of str
DBus.Signature signature (‘g’) a subclass of str
DBus.String string (‘s’) a subclass of

unicode
DBus.UTF8String string (‘s’) a subclass of str
bool Boolean (‘b’)
int or subclass 32-bit signed integer (‘i’)
long or subclass 64-bit signed integer (‘x’)
float or subclass double-precision float (‘d’)
str or subclass string (‘s’) must be valid

UTF-8
unicode or sub-
class

string (‘s’)

Table 1

Open Gurus  |  Let's Try

88  |  March 2009  |  LINUX For You  |  www.openITis.com

 Let's Try  |  Open Gurus

File name: DBus-example-service.py

#!/usr/bin/env python

import gobject

import DBus

import DBus.service

import DBus.mainloop.glib

class ExampleObject(DBus.service.Object):

 @DBus.service.method(“org.example.Sample”,

 in_signature=’s’, out_signature=’as’)

 def HelloWorld(self, test_message):

 print (str(test_message))

 return [“Hello World “,” DBus-service”,str(test_message)]

 @DBus.service.method(“org.example.Sample”,

 in_signature=’’, out_signature=’s’)

 def Ping(self):

 	 print “Pinged”

 return str(“Hi. I am Alive”)

 @DBus.service.method(“org.example.Sample”,

 in_signature=’’, out_signature=’’)

 def Exit(self):

 mainloop.quit()

if __name__ == ‘__main__’:

 DBus.mainloop.glib.DBusGMainLoop(set_as_default=True)

 session_bus = DBus.SessionBus()

 name = DBus.service.BusName(“org.example.Sample”, session_bus)

 object = ExampleObject(session_bus, ‘/ExampleObject’)

 mainloop = gobject.MainLoop()

 print “Running example DBus service: org.example.Sample.”

 mainloop.run()

Here we have a class derived from DBus.service
Object, which consists of the HelloWorld(), Ping() and
Exit functions that are to be exposed through the service.
The decorator like @DBus.service.method(“org.example.
Sample”, in_signature=’’, out_signature=’’) is used to
expose these functions. It consists of parameters in_
signature and out_signature, specifying the type of input
(parameters to the function) and output (return type).
You can refer to Table 1 for the types that are available.
For example, ‘s’ specifies string, ‘sa’ specifies string array, ‘i’
specifies integer as so on.

Let us now code a D-Bus client (client.py) to access
methods exported by org.example.Sample:

#!/usr/bin/env python

import DBus

bus = DBus.SessionBus()

 remote_object = bus.get_object(“org.example.Sample”,”/ExampleObject”)

interface = DBus.Interface(remote_object, ‘org.example.Sample’)

reply = interface.Ping()

print “Ping() returns : “ + reply

reply = interface.HelloWorld(“GNU/Linux”)

print “Helloworld() returns: “

for s in reply:

	 print s,

If you go through the above code, you can understand
that it simply creates a proxy object and an interface to the
org.example.Sample service. Further, it calls the methods
available. You can call it through any type of D-Bus client
access method like DBus-send tool. Try this:

[slynux@slynux-laptop examples]$ DBus-send --session --dest=org.example.

Sample --print-reply /ExampleObject org.example.Sample.Ping

method return sender=:1.326 -> dest=:1.364 reply_serial=2

 string “Hi. I am Alive”

Now, you can open a terminal and execute the service
script first and client after that.

On terminal tab 1:

[slynux@slynux-laptop examples]$ python example-service.py

Running example DBus service: org.example.Sample.

Pinged

GNU/Linux

One terminal tab 2:

[slynux@slynux-laptop examples]$ python example-client.py

Ping() returns : Hi. I am Alive

Helloworld() returns:

Hello World DBus-service GNU/Linux

Figure 5: A schematic representation of service-client interaction

Hacking other applications with D-Bus
Let us now focus more on the implementation and go
through the coding part involving some applications, say, for
example, Pidgin. Pidgin is a well-known IM client that a lot
of us use to talk to people. We will now work on the D-Bus
service interfacing with Pidgin in order to talk with Pidgin:

#!/usr/bin/env python

import DBus,subprocess,time

def set_status(message):

	 current = purple.PurpleSavedstatusGetType(purple.

PurpleSavedstatusGetCurrent())

	 status = purple.PurpleSavedstatusNew(“”,current)

	 purple.PurpleSavedstatusSetMessage(status, message)

	 purple.PurpleSavedstatusActivate(status)

Open Gurus  |  Let's Try Let's Try  |  Open Gurus

www.openITis.com  |  LINUX For You  |  March 2009  |  89

bus = DBus.SessionBus()

obj = bus.get_object(“im.pidgin.purple.PurpleService”,”/im/pidgin/purple/

PurpleObject”)

purple = DBus.Interface(obj,”im.pidgin.purple.PurpleInterface”)

while True:

	 fortune=subprocess.Popen(‘fortune’, stdout=subprocess.PIPE).

stdout.read()

	 set_status(fortune)

	 time.sleep(10)

The above script makes uses of fortune command
to generate random quotes. You may have noticed the
gnome-panel applet Fish. Do you remember the “free
the fish” Easter egg? Fish uses fortune as its back-end
for generating quotes. The above script sets the status
message for Pidgin every 10 seconds with a random quote
generated by the fortune command.

The next application in line is Tomboy, a note-taking
application, which ships with GNOME. This is how you can
talk to Tomboy and collect all the notes created with it to
print them on a terminal:

#!/usr/bin/env python

import DBus

bus = DBus.SessionBus()

obj = bus.get_object(‘org.gnome.Tomboy’,’/org/gnome/Tomboy/

RemoteControl’)

tomboy = DBus.Interface(obj, ‘org.gnome.Tomboy.RemoteControl’)

notes = tomboy.ListAllNotes();

for note in notes:

	 print tomboy.GetNoteContents(note)

How about fiddling with Exaile music player, the
GNOME-based Amarok clone? Our aim is to write few
lines of Bash script to enquire the application on current
music track, album name and artist. Add the following
lines to the ~/.bashrc file:

artist=$(DBus-send --print-reply --dest=org.exaile.DBusInterface \

/DBusInterfaceObject org.exaile.DBusInterface.get_artist 2> /dev/null | grep

‘”.*”’ -o | tr -d ‘”’);

album=$(DBus-send --print-reply --dest=org.exaile.DBusInterface \

/DBusInterfaceObject org.exaile.DBusInterface.get_album 2> /dev/null | grep

‘”.*”’ -o | tr -d ‘”’);

if [[-n $album]]; then

echo -e “\nCurrently Playing $album, $artist\n”;

fi

Notice how every time you open a new terminal, it
lists the information about the song currently playing
in Exaile. Of course, if the player is not running, it
wont print anything. Here, the DBus-send command is
used to communicate with Exaile through the D-Bus
interface.

Let’s hack GNOME’s PowerManager to to hibernate our
machine:

[slynux@slynux-laptop ~]$ python

Python 2.5.2 (r252:60911, Sep 30 2008, 15:41:38)

[GCC 4.3.2 20080917 (Red Hat 4.3.2-4)] on linux2

Type “help”, “copyright”, “credits” or “license” for more information.

>>>

>>> import DBus

>>> bus=DBus.SessionBus()

>>> power = bus.get_object(‘org.freedesktop.PowerManagement’,’/org/

freedesktop/PowerManagement’)

>>> pm = DBus.Interface(power,’org.freedesktop.PowerManagement’)

>>> pm.Hibernate()

The above code makes the PowerManagement
daemon execute the Hibernate() function and the
machine goes into hibernation. You can also use the
Shutdown(), Reboot(), Suspend() instead.

So you see, by embedding any kind of D-Bus
interfacing you are able to extract different sorts
of things from an application. There are numerous
applications that are hackable with D-Bus interfacing.
Try it out for yourself—it’s fun!

Note:Debugging D-Bus applications can be a hurdle
sometimes. You can use the DBus-monitor to

examine the events for a better understanding.
Alternatively, you can also check out the D-Feet D-Bus
debugger tool written by John Palmeri.

Bottom line
Now a days, most of the GNOME and KDE apps come
with DBus interface support. This makes it easier for
applications to communicate with each other and
eliminates the higher-degree task of recompiling every
application to make it compatible with another.

Now, here is your task. You may find that some of
your favourite applications do not have D-Bus support.
If you do, maybe you can start writing the D-Bus
interfacing for your favourite applications—contribute
back to the community, it’s not that hard really! Happy
Hacking! 

By: Sarath Lakshman
The author is a Hacktivist of Free and Open Source
Software from Kerala. He loves working on the GNU/Linux
environment and contributes to the PiTiVi video editor
project. He is also the developer of SLYNUX, a distro for
newbies. He blogs at www.sarathlakshman.info

